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Abstract

Carbonatites are proven significant repositories of several critical and strategic

elements such as rare earth elements, niobium, thorium, and uranium. Owing to

their economic significance, mapping of carbonatites and associated mineral

deposits has occupied prominent place in mineral resource exploration programs.

In this study an integrated approach was developed to map carbonatite and

related mineral deposits in the Loe-Shilman, Northwest Himalaya of Pakistan,

using remotely sensed advance space-borne thermal emission and reflection radi-

ometer (ASTER) multispectral data and visible near infrared and short-wave

infrared (VNIR-SWIR) spectral characteristics of minerals in these deposits. Sev-

eral image enhancement techniques, including band ratio (i.e., B4/B3), principal

component and minimum noise fraction transformation (PC6 and MNF5, respec-

tively) helped in highlighting the targeted rocks. The results demonstrate the suit-

ability of ASTER data for discriminating carbonatite related mineral deposits

from other surrounding lithologies. Results obtained from these methods were

validated through field observations in the area and further confirmed through

petrographic and chemical analyses of collected specimens. Field data have also

served as training data to perform a supervised classification, allowing further

improvement of the mapping results. Moreover, the obtained results from the

techniques used for exploring carbonatites and related mineral deposits were

stacked together for comparison with each other, to check their sensitivities, and

assess their efficiency and accuracy. Generally, all these methods successfully

highlighted carbonatites and related mineral deposits; however, when used inte-

gratively they exhibit higher degree of accuracy, and has proven to be relatively

rapid and cost-effective.
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1 | INTRODUCTION

Carbonatites are unusual magmatic rocks and has been
remained as the primary source of economic mineral

deposits, including the rare earth elements, niobium, tan-
talum, titanium, which are vital element in the develop-
ment of emerging industries and green technologies
(e.g., Chakhmouradian et al., 2015; Groves &
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Gwalani, 2004; Su et al., 2019 and references therein).
They also host significant iron, zirconium, thorium, ura-
nium, phosphorus and fluorine deposits that are usually
related to magmatic and/or weathering processes
(e.g., Ouabid et al., 2021; Toledo et al., 2004; Zaitsev
et al., 2015). A number of other economic metals are also
produced as by-product during metallurgical process,
which include Au, Ag, Ta, and platinum group element.
Consequently, worldwide many exploration programs
have been brought out in recent times for carbonatites
and associated deposits to develop and diversify the sup-
ply source for critical metals. The utility of remote sens-
ing techniques to delineate and discover occurrences of
carbonatite and associated mineral deposits particularly
in remote areas has been approved a time- and cost-
effective approaches, especially in arid regions. The
Advanced Space-borne Thermal Emission and Reflection
Radiometer (ASTER) data have been effectively used for
exploring carbonatites and related mineral deposits
(CRMD) by using several image processing techniques
(e.g., Mars & Rowan, 2011; Rajendran & Nasir, 2013).
ASTER data offer relatively better spatial and spectral
resolutions compared to other multispectral sensors such
as Sentinel -2 and Landsat, which make ASTER data
more suitable for mapping carbonatite deposits. The car-
bonatite rocks of the Khaneishen volcanic region in
Afghanistan have been delineated by the ASTER data by
using band rationing and decorrelation stretch methods
(e.g., Mars & Rowan, 2011). Similarly, the spectral
absorption properties due to molecular reflection and
absorption characteristics of carbonate minerals in the
Visible and Near Infrared-Short Wave Infrared
(VNIR-SWIR) region of ASTER, have been used to dis-
criminate carbonatite deposits in Oman
(e.g., Rajendran & Nasir, 2013). Similar spectral charac-
teristics of most indicative minerals of carbonatite and
associated iron oxide-apatite deposits have been impli-
cated to band ratio, Principal Component Analysis (PCA)
and Minimum Noise Fraction (MNF) algorithms for
mapping carbonatite and iron oxide-apatite deposits in
Gleibat Lafhouda, Morocco (e.g., Malainine et al., 2022).
ASTER VNIR-SWIR data have also been subjected to
PCA to investigate outcrops of carbonatites in Batein
Nappe of Oman (e.g., Rajendran & Nasir, 2013). How-
ever, the occurrence of other lithologies in the targeted
area having similar spectral characteristics usually
complicate the process of remote sensing based mapping,
particularly when the approach is based only on one
method like gray scale image visualization through band
ratio and/or RGB color composites.

The northwestern Himalayan region of Pakistan host
several alkaline-carbonatite complexes with potential
resources of critical metals. These complexes are mainly

occurring around the northern margin of Peshawar plain
and south of the Himalayan Main Mantle Thrust
(Figure 1a), which include: (1) Loe-Shilman complex in the
vicinity of Pakistan-Afghanistan border (e.g., Jan
et al., 1981; Khan, Faisal, Larson, et al., 2021; Khan, Faisal,
Ullah, et al., 2021), (2) Sillai Pattai, (3) Koga, and (4) Jambil
carbonatites further eastward (e.g., Hong et al., 2021; Khan
et al., 2023). Preliminary investigation in the Loe-Shilman
carbonatite complex has revealed promising niobium and
rare earth elements mineralization (e.g., Khan, Faisal,
Ullah, et al., 2021). Despite of having potential of critical
mineral deposits, the geology of the Loe-Shilman carbona-
tite complex and its extension in the area remains poorly
understood because of remoteness, inaccessibility and
restricted mobility in the area. Therefore, geological map-
ping approaches based on the interpretation of remote
sensing data can contribute in improving our understand-
ing of this area's geology. This study highlights the poten-
tial of ASTER data to identify and map carbonatites and
related mineral deposits. In this regard, ASTER data were
subjected to several image enhancement techniques (band
rationing, PCA, MNF and supervised classification) to
highlight the extension of the carbonatite complex and
associated mineral deposits. The integration of these multi-
ple techniques was used to elude false detection of material
of interest and enhance accuracy of the mapping. This inte-
grated approach has been applied in the Loe-Shilman car-
bonatite complex, northwestern Himalaya of Pakistan in
order to evaluate the efficiency of ASTER and of this inte-
grated approach, using field and petrographic observations,
and geochemical x-ray fluorescence analysis for validation
(e.g., Khan et al., 2020; Raji et al., 2021).

2 | GEOLOGICAL SETTING OF THE
STUDY AREA

Northwestern Pakistan is comprised of diverse tectonic
terrains, which include the Cretaceous Kohistan Island
Arc (KIA), the Euro-Asian and Indian continents. The
KIA is sandwiched between the colliding Euro-Asian and
Indian continents along regional thrust zones known as
the Main Karakorum Thrust (MKT) and Main Mantle
Thrust (MMT) to the north and south, respectively
(e.g., Burg, 2011; Jagoutz et al., 2009; Khan et al., 2009;
Rehman et al., 2011; Searle & Treloar, 2010). The
Loe-Shilman carbonatite complex is intruded within the
Proterozoic to Devonian meta-sedimentary rocks of the
Indian plate in the northwestern Himalayan collisional
margin and is the largest carbonatite intrusion of
Pakistan (with 2.4 km � 180 m in length and width;
respectively; Jan et al., 1981; Khan, Faisal, Larson,
et al., 2021; Khan, Faisal, Ullah, et al., 2021).
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The complex is a north dipping and an East–West
trending tabular body of carbonatites with variable thick-
ness and contain subordinate ultrapotassic-alkaline sili-
cate rocks in patches (e.g., Khan, Faisal, Larson,
et al., 2021; Khan, Faisal, Ullah, et al., 2021; Figure 1b).
The complex is bounded by the Paleozoic (Cambrian—
Devonian) meta-sedimentary rocks and minor mafic
rocks (dolerites) in the north and Proterozoic slate and
phyllite in the south (e.g., Jan et al., 1981; Khan, Faisal,
Larson, et al., 2021; Khan, Faisal, Ullah, et al., 2021;
Mian & Le Bas, 1988). The surrounding country rocks of
the complex (i.e., slate, phyllite, recrystallized carbonates
and quartzite, and schistose rocks) are subjected to
regional metamorphism of up to biotite zone, and at

placed have experienced substantial alteration as a result
of fenitization (e.g., Jan et al., 1981; Mian & Le
Bas, 1988). The complex submerges under the Kabul
River in its west and might extend further into
Afghanistan, where it has not been studied yet.

3 | DATA AND METHODS

3.1 | Acquisition and correction of data

A multispectral ASTER level 1T scene (AST_L1T) cover-
ing the Loe-Shilman area is used (Table 1), which are
acquired from the Land Processing Distribution and

FIGURE 1 Map showing (a) carbonatites occurrences in the NW Pakistan (the geological details, adopted from DiPietro and Isachsen

(2001), are overlaid on ASTER digital elevation model of the area) and (b) various lithologies of the Loe-Shilman carbonatite complex and

surrounding host rocks (modified after Jan et al., 1981; Mian & Le Bas, 1988; Khan, Faisal, Larson, et al., 2021; Khan, Faisal, Ullah,

et al., 2021).
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Active Archives Center (LPD-AAC; https://LPD-AAC.
usgs.gov). The ASTER_L1T data are generated from
AST_L1B radiance data, which have been geometrically
and terrain corrected. The downloaded scene of the study
area was registered into Universal Transverse Mercator
(UTM) zone 42 North as this zone cover the study area.
ASTER is a multispectral sensor launched in 1999,
onboard the Earth Observing System (EOS) Terra plat-
form. Since long, ASTER data have been effectively used
for exploration of various minerals and lithological map-
ping by several workers (e.g., Khan et al., 2020;
Malainine et al., 2022; Mashkoor et al., 2022; Traore
et al., 2022). ASTER sensor has relatively bettered spatial
and spectral resolutions as compared to most other multi-
spectral satellite data such as Spot -2, Sentinel -2, and

Landsat images. It records reflected radiation in nine
bands between 0.52 and 2.43 μm, in visible near infra-red
and short-wave infra-red region of electromagnetic radia-
tion with 15–30 m spatial resolution (e.g., Abrams, 2000;
Fujisada, 1995; Yamaguchi et al., 1999). Besides, ASTER
sensor measures thermal infrared wavelength in five
bands between 8.125 and 11.65 μm with 90 m spatial res-
olution (Table 2). These ameliorated spectral and spatial
characteristics makes ASTER sensor more successful for
exploration and mapping of carbonatites and related
mineral deposits.

The ASTER TIR data were not used because of its
coarse resolution. Instead, the VNIR and SWIR ASTER
bands were stacked in one file of nine bands and resized to
15 m spatial resolution. The nine banded single file was

TABLE 1 Detail information about

the ASTER scene used in this study.
Information type Value

Granule ID AST_L1T_00310272003061152_20150501084151_89285

Processing level ID L1T

Acquisition date 2003-10-27

Source data product ASTL1A 0310270611520311090528

Production date 2015-05-01

Scene center 34.0270588715735, 70.968053

Scene upper left 34.3682013343316, 70.5204766999192

Scene upper right 34.3534578345728, 71.4330867845996

Scene lower left 33.697973396652, 70.5085641417997

Scene lower right 33.6835949492043, 71.4140379559571

Solar direction 164.217254, 41.90206

TABLE 2 Characteristics of the ASTER sensor used in this study.

Subsystem Band no. Spectral range (mm) Spatial resolution (m) Signal quantization levels (bits)

VNIR 1 0.52–0.60 15 8

2 0.63–0.69

3N 0.78–0.86

3B 0.78–0.86

SWIR 4 1.600–1.700 30 8

5 2.145–2.185

6 2.185–2.225

7 2.235–2.285

8 2.295–2.365

9 2.360–2.430

TIR 10 8.125–8.475 90 12

11 8.475–8.825

12 8.925–9.275

13 10.25–10.95

14 10.95–11.65
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then atmospherically corrected using the FLAASH (Fast
Line of sight Atmospherics Analysis to Hyparcubes) mod-
ule (e.g., Adler-Golden et al., 1998; Cooley et al., 2002) for
converting radiance at sensor data to surface reflectance
and eradicating the effects produced by water vapor and
cloud cover during recording of the data. The stacked
image was then subset to the study area. At the end, sev-
eral procedures of image classification for enhancement of
desired material were applied on the nine VNIR and SWIR
bands of ASTER data, such as band ratios, PCA and MNF.
Details of procedures and data used in this study are sum-
marized in Figure 2. All the data analyses including pre-
processing and image classification were carried out using
ENVI (Environment for Visualizing Images) version 5.1
and then subjected to ArcGIS 10.5 for reclassification and
integration of the obtained results.

3.2 | Band ratio VNIR-SWIR

Band rationing is an extensively used method for investi-
gating and mapping various mineral deposits, ore deposits
related hydrothermal alteration and weathering zones, and
other rock types, for example, limestone, gypsum, perido-
tites and several other acidic and mafic-ultramafic igneous
rocks (e.g., Amer & Kusky, 2022; Khan et al., 2020;

Malainine et al., 2022; Traore et al., 2022 and references
therein). It is the ratio of the digital numbers (DN) of indi-
vidual pixels in different bands used and highlights the
desired material in bright pixels. The selection of suitable
bands to be subjected to band rationing depends on the
absorption and reflection signatures of the material of
interest in electromagnetic spectrum and the abundance of
desired material in the scene (e.g., Clark, 1999; Pour &
Hashim, 2011; Sabins, 1999).

Major composition of carbonatites is the carbonate min-
erals (e.g., calcite and dolomite), which have several diag-
nostic spectral characteristics. These minerals can be
distinguished in the VNIR-SWIR region of electromagnetic
radiations between 2.33 and 2.45 μm due to the spectral
absorption of CO3

2� anions (e.g., Clark, 1999; Mars &
Rowan, 2010; Ninomiya, 2002; Rajendran & Nasir, 2014;
Son et al., 2022; Traore et al., 2022). In the VNIR region of
spectrum, iron-oxide/hydroxides have spectral characteristic
absorption signatures around 0.455 and 0.815 μm due to
the ferrous (Fe2+) and ferric (Fe3+) iron ions
(e.g., Clark, 1999). These signatures in respective ASTER
spectral bands were tested to select the most suitable band
ratio for exploring CRMD. The spectral curves of the most
distinctive minerals occur in carbonatites were acquired
from the USGS spectral library, and were resized to ASTER
band-pass (e.g., Kokaly et al., 2017; Pour & Hashim, 2011).

FIGURE 2 Showing data and

procedures followed in this study.
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A database of occurrences of carbonatites and related
mineral deposits was established during field work in the
study area and from previously known locations
(e.g., Khan, Faisal, Larson, et al., 2021; Khan, Faisal, Ullah,
et al., 2021). In order to assess the performance of various
band ratios used for highlighting carbonatites and related
mineralization, the digital numbers of each band ratio and
the corresponding sample from the database were plotted
in the Receiver Operating Characteristic (ROC) curves
(e.g., Nykänen et al., 2015). The curves were created by
plotting sensitivity (true positive rate) against 1-specificity
(false positive rate) at varying thresholds. The Area Under
Curve (AUC) was used as an indicator to quantify the per-
formance of the various band ratios used.

3.3 | Principal Component
Analysis (PCA)

The PCA is procedure of transforming a multivariate data
set of inter-correlated variables into a data set of new
uncorrelated linear combinations of variables in such a
way that the first linear combination, or principal compo-
nent, measures for as much of the variance in the data as
possible and each subsequent component has smaller
variance (e.g., Crosta et al., 2003; Khan et al., 2020;
Mars & Rowan, 2011; Ninomiya et al., 2005; Pour &
Hashim, 2011; Qari et al., 2008; Singh & Harrison, 1985).
The PCA is a recognized method of image classification
and enhancement by compressing and narrowing the
data of different bands within the first few bands
(e.g., Loughlin, 1991; Öztan & Süzen, 2011).

The PCA is an efficient statistical method of
highlighting spectral characteristics of exposed geological
material by subduing the irradiance effects that exist in
all bands (e.g., Crosta et al., 2003; Loughlin, 1991;
Sabins, 1999; Tobin et al., 2007). The PCA has been used
successfully for lithological mapping and mineral explo-
ration with several advantages, including narrowing the
variance of an image into a single or two bands, a segre-
gation and transformation of noise into less correlated
bands and enhancing spectral variation between surface
materials that may otherwise be hidden in individual
bands (e.g., Crosta et al., 2003; Öztan & Süzen, 2011).
The PCA was applied on ASTER VNIR-SWIR bands to
delineate carbonatites and related mineralization from
surrounding rocks in the study areas.

3.4 | Minimum Noise Fraction (MNF)

Like PCA, the MNF transformation is also an efficient
technique for reducing initially a large data set to a smaller

number of components that contain low incoherent data
and most inherent spectral information (e.g., Green
et al., 1988). The MNF differentiate noise in the image data
and ease the computational necessities for succeeding pro-
cessing (e.g., Boardman et al., 1995; Green et al., 1988;
Pour & Hashim, 2011). The MNF transformation happens
in two steps; first is called noise-whitening which is calcu-
lation of principal components for decorrelating and rescal-
ing the noise in the data from noise covariance matrix. The
second step is derivation of the principal components from
the noise free (whitened) data. The data is then divided
into two parts: one part is having large eigenvalues and the
other part is having eigenvalues near unity and noise domi-
nated images. Using data with large eigenvalues collect the
noise from the data, and enhance spectral outputs
(e.g., Boardman et al., 1995; Green et al., 1988; Pour &
Hashim, 2011). MNF transformation can highlight the
locations of spectral anomalies, which are of interest to
exploration geologist. MNF was also applied on ASTER
VNIR-SWIR bands and the results were compared and
integrated with those of PCA and band ratios to better
highlight carbonatites and related mineral deposits from
surrounding rocks in the study areas.

3.5 | Methods integration and accuracy
assessment

The study area was visited to assess the success of the
methods applied for delineating CRMD. Common carbo-
natite outcrops highlighted by all of the methods were
checked by collecting field observation and sampling
them for petrographic and chemical analyses. The
methods applied give different results, may be due to
their different sensitivities to detect carbonatites and
related mineral deposits. Therefore, to compare the suc-
cess of the methods applied spatially, a relative accuracy
assessment was carried out. For this purpose, the resul-
tant images were reclassified in Geographic Information
System (Arc GIS 10.8) to extract pixels representing
CRMD in each method. The pixels that represent CRMD
were assigned a value 1 while the other pixels were val-
ued 0. Then the extracted carbonatite pixels were com-
bined and an integrated map with three different classes
was generated.

3.6 | Supervised classification

The obtained results and field date were used as training
classes to perform a supervised classification using the
maximum likelihood (ML) algorithm. The ML algorithm
is one of the widely used techniques for remotely sensed
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image classification (e.g., Ahmad & Quegan, 2012; Jia &
Richards, 1994; Malainine et al., 2022). It is based on a
discriminant function that assigns each pixel to the
appropriate class based on the highest likelihood to
the training areas. The accuracy of the ML classification
was assessed using a confusion matrix, which is based on
the comparison of the reference data and the correspond-
ing results.

4 | RESULTS

4.1 | Mapping of carbonatite and related
mineral deposits

The spectral signature of carbonate minerals show max-
imum absorption in bands 8 and 7 compared to neigh-
boring bands 6 and 9 (Figure 3). Therefore, the
following ASTER band ratios have been used as the
most optimal choices: (B7/B8), (B6/B8), (B6/B8) *
(B9/B8), (B6 + B8)/B7, (B6 + B9)/B7, and (B6/B7) *
(B9/B8). Besides carbonates, it can also be perceived
from Figure 3 that the most indicative minerals for car-
bonatite (i.e., phlogopite, apatite, and magnetite, and its
alteration to hematite, goethite, and limonite) show
similar absorption and reflection features, with charac-
teristic absorption at band 3 to band 1 and high reflec-
tance in band 4 of ASTER data. Consequently, band
ratios B4/B3, and B2/B1, and B4/B1 were also used to
map carbonatites and related mineral deposits of iron
oxide and apatite.

Among the computed band ratios, B4/B3 has success-
fully mapped CRMD (Figure 4a), with the highest AUC
value (0.72) compared to the other band ratios (Figure 5).
Besides, (B6/B7) * (B9/B8) has a good performance with
AUC = 0.64 compared to the other tested band ratios for
highlighting carbonatites (Figure 4b). However, the band
ratio (B6/B7) * (B9/B8) presents enhanced results due to
presence of similar spectral signature of meta-
sedimentary dolomite (carbonate rock) along the north-
ern contact of carbonatite intrusion in the study area.
Therefore, only band ratio B4/B3 has been consider to
map carbonatites and associated mineral deposits of iron-
oxide and apatite over the Loe-Shilman area. Figure 4
shows results of these two bands where the CRMD are
highlighted in bright pixels.

FIGURE 3 The spectral features of the carbonates, Fe-oxide/

hydroxides, apatite, and phlogopite as the most distinctive minerals

of carbonatites. The spectral data are obtained from the USGS

spectral library and resampled according to ASTER bands

(e.g., Kokaly et al., 2017).
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4.2 | Principal Component Analysis

After PCA transformation the resultant eigenvectors and
eigenvalues, using covariance matrix on all nine VNIR-
SWIR bands of ASTER scenes covering the study area are
presented in Table 3.

PC1 is composed of a positive eigenvector loading of all
nine VNIR-SWIR bands. Albedo effect and scene bright-
ness might have caused the strong correlation between
multispectral image bands (e.g., Loughlin, 1991). Hence,
PCA has effectively recorded albedo into PC1 of the trans-
formed images. Eigenvector loadings for PC2 demonstrate
that PC2 probably depicts the difference between the
visible–near infrared channels, including bands 1, 2, and
3 (positive eigenvector loadings) and the short-wave

infrared channels, including bands 4, 5, 6, 7, 8, and 9 (nega-
tive eigenvector loadings). Eigenvector loading of PC3
shows similarity with the spectral signature of Al(OH)-
bearing minerals, specifically alunite and kaolinite
(e.g., Mars & Rowan, 2006). These minerals have high
reflectance in band 3 and 2, low reflectance in band 8 and
absorptive features in bands 1, 4, 5, 6, 7, and 9, which are
depicted by the eigenvector loading of PC3 (Table 3). Simi-
larly, high eigenvector loadings in band 3 of PC4 indicate
that PC4 is dominated by vegetation, because vegetation
has highly reflectance in band 3 of ASTER data. Crosta
et al. (1988) and Loughlin (1991) have suggested that
enhancement of a mineral in PC image happens because
of weighty eigenvector value for characteristic absorptive
and reflective bands of mineral with opposite signs. By
probing the eigenvector loadings of PC6, the high positive
loadings of band 6 (0.8523) and high negative eigenvector
loadings of band 8 (�0.3860) exhibit absorption and reflec-
tive features, respectively, which are similar to the spectral
signatures of carbonate minerals. The negative eigenvector
loading in bands 1, 2, and 3 and positive eigenvector load-
ing in bands 4–7 in PC6 also depict the absorptive and
reflective features, respectively, of other indicative minerals
of carbonatites (Figure 6a). Thus, the PC6 was considered
for enhancing CRMD over the Loe-Shilman area
(Figure 6a). Figure 6b shows RGB false color composite of
PC1, PC2, and PC6.

4.3 | Minimum Noise Fraction

The VNIR and SWIR bands of ASTER data were used
as input in the MNF method and the output trans-
formed eigenvectors are given in Table 4. The MNF5
shows a positive contributions of bands 4, 5, and 6 with
negative vector loadings of bands 1, 2, 3, and 8. These

FIGURE 4 (a) Band ratio B4/B3 and (b) (B6/B7) * (B9/B8) image of the study area highlighting outcrops of the CRMD in bright pixels.

FIGURE 5 ROC curve and AUC values of carbonatites

predictive band ratios.
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characteristics are showing similarities to the spectral
characteristics of most indicative minerals of carbona-
tite (apatite, phlogopite, hematite, limonite, and goe-
thite), and likely the CRMD are classified in this

component as dark pixels (Figure 7a). Thus, MNF4 was
chosen among the other components to enhance the
outcrops of CRMD in the study area. Figure 7b shows
RGB false color composite of MNF1, MNF2, and MNF5.

TABLE 3 Eigenvector statistics of principal components analysis on VNIR-SWIR bands of ASTER data for the study area.

Eigenvector Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 9

PC 1 0.5587 0.4696 0.2925 0.2722 0.2580 0.2681 0.2504 0.2490 0.2109

PC 2 0.5875 0.2333 0.0969 �0.3528 �0.3081 �0.3643 �0.3254 �0.3434 �0.1230

PC 3 �0.5371 0.6596 0.3696 �0.1548 �0.2418 �0.0654 �0.0676 0.1855 �0.1186

PC 4 0.0906 0.2979 �0.7595 �0.3362 �0.0968 �0.0307 0.2243 0.3903 0.0145

PC 5 0.0137 0.1888 �0.1335 0.1393 0.3582 0.0557 0.1485 �0.2480 �0.8438

PC 6 �0.0643 �0.0019 �0.0008 0.2707 0.0606 0.8523 0.1874 �0.3860 0.0918

PC 7 0.1510 �0.3143 0.2877 �0.2035 �0.5349 0.2319 0.5275 0.1837 �0.3199

PC 8 0.1513 �0.1653 0.0129 0.2640 �0.1033 �0.0234 �0.5716 0.6570 �0.3321

PC 9 0.0124 �0.1879 0.2869 �0.6787 0.5847 �0.0801 �0.0222 0.2671 �0.0387

FIGURE 6 (a) PC6 transformed and (b) RGB-false color composite of PC1, PC2, and PC6 images of the study area.

TABLE 4 Eigenvector statistics of MNF transformation on VNIR-SWIR bands of ASTER data for the study area.

Eigenvector Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 Band 9

MNF 1 �0.9585 �0.2640 �0.0119 0.0090 0.0198 �0.0530 �0.0739 �0.0020 0.0530

MNF 2 �0.2152 0.6504 0.6089 0.1685 0.0127 0.2877 0.1376 �0.1549 �0.0750

MNF 3 �0.1258 0.2042 �0.3150 �0.2599 0.1432 0.0892 0.4106 0.3739 �0.6624

MNF 4 �0.0616 0.2266 �0.3891 0.0951 0.1541 0.3976 0.2845 0.2952 0.6591

MNF 5 �0.0244 �0.1457 �0.3204 0.3343 0.2992 0.5365 0.1690 �0.5716 0.1764

MNF 6 �0.0798 0.2646 �0.1483 0.0062 �0.7606 �0.4473 0.3251 �0.0211 0.1299

MNF 7 0.0295 �0.1417 0.1357 0.0149 0.4813 �0.4250 0.6472 �0.3304 0.1419

MNF 8 0.0864 �0.4607 0.5347 0.0367 �0.2236 0.1340 0.3140 0.5685 0.0581

MNF 9 0.0122 �0.0103 �0.1537 0.9339 0.0745 �0.1518 �0.0136 0.1687 �0.2163
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4.4 | Relative accuracy assessment

The most appropriate band ratio (i.e., B4/B3) and selected
components from PCA and MNF transformations (i.e., PC6
and MNF5) were reclassified and thresholded to extract the
most representative pixels for CRMD in each method. It
was observed that these applied methods yield different
carbonatite anomalies, in some areas, which might be due
to difference in sensitivities of these methods to the tar-
geted materials occurring in the scene (Figures 4a, 6, and
7). Therefore, to check the relative accuracy of the applied
methods an integrated map was produced by reclassifying
the resultant images and combining all the methods
(i.e., band ratio, PCA, and MNF). For this purpose, the
bright pixels in band ratio image B4/B3, representing out-
crops of CRMD were classified as 1 while all other pixels as
0 (Figure 8a). Similarly, the dark red pixels in RGB color
composite of PC 1, 2, 6 transformed images and of MNF
1, 2, 5 (Figures 6b and 7b) were classified as 1 and all other
pixels as 0 (Figure 8b,c).

After reclassification, it was found that the pixels repre-
senting CRMD in PC6 and MNF5 images occur in a rela-
tively restricted areas, which is 15.36% and 19.35% of the
total study area (Table 5). While, the band ratio B4/B3
image yield a large number of pixels representing outcrops
of CRMD in the study area (i.e., 29.60% of the study area).
To evaluate the success and responses of all of the methods
applied and correlate their results, three different classes
were generated (Table 6), which are presented in Figure 9.
Class 1 represents those areas where only one method, any-
one of the three methods, represents exposures of CRMD;
class 2 represents areas where any two of the methods
simultaneously depict outcrops of CRMD; while class 3 rep-
resents areas where all of the methods applied are showing
CRMD occurrences commonly. It can be observed that
there is a decrease in the number of pixels representing
CRMD from class 1 to class 3. Class 1 and 2 represent

64.31% and 29.99% of the total pixels representing possible
CRMD in the study area, whereas class 3 has only 5.70%
pixels (Table 6).

4.5 | Field visit and absolute accuracy
assessment

A field work was carried out in the Loe-Shilman area to
validate the accuracy of the methods applied for mapping
the occurrences of CRMD (Figure 9). Most of the areas,
where the occurrences of CRMD were highlighted, were
visited and several samples were collected for petro-
graphic and chemical analyses. The carbonatites occur as
white, pale brown to brown, medium- to coarse-grained
rocks (Figure 10). Mineralogicaly they are dominantly
composed of calcite (61%–72%), and contain variable
amounts of F-apatite (10%–15%), phlogopite (10%–15%),
Ca + Na- to Na-amphiboles (i.e., richterite to magnesio-
arfvedsonite; 10%–15%), magnetite (3%–5%), and trace
amount of pyrochlore, zircon and monazite (Figure 10).
Humid-subtropical to tropical climatic conditions of the
area has caused intensive weathering of the carbonatites
and has developed a supergene laterite layer of variable
thickness over the carbonatite complex. The supergene
lateritic layer is dark brown and is consist of hematite,
goethite, magnetite, limonite, zircon, pyrochlore, mona-
zite, apatite and rutile with relicts of carbonatites. Chemi-
cally, the carbonatites are high in CaO (29.11–50.39 wt
%), Fe2O3 (2.61–12.60 wt%), MgO (0.81–17.10 wt%) and
P2O5 (1.29–6.48 wt%), and low in SiO2 (2.49–7.51 wt%),
Al2O3 (0.17–0.98 wt%), TiO2 (0.02–0.73 wt%), MnO (0.24–
1.95 wt%) and alkalis (Na2O + K2O < 2 wt%) (Khan, Fai-
sal, Larson, et al., 2021).

During field observations it was observed that the
class 3 has effectively and accurately mapped outcrops of
the CRMD. It was also observed that band ratio B4/B3

FIGURE 7 (a) MNF5 transformed and (b) RGB-false color composite of MNF1, MNF2, and MNF5 images of the study area.

10 of 16 KHAN ET AL.

 17513928, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/rge.12321 by IN

A
SP/H

IN
A

R
I - PA

K
IST

A
N

, W
iley O

nline L
ibrary on [08/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FIGURE 8 Showing reclassified

images of (a) band ratios, (b) PCA, and

(c) MNF. The brighter pixels are

representing exposures of CRMD.
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has given some false results of mapping CRMD, which
are scattered in the band ratio B4/B3 image (Figures 4a
and 8a).

4.6 | Supervised classification-based
mapping

The results obtained from the integration of the different
methods were used to perform a supervised classification.
As confirmed by field observations that class 3 coincides
well with the outcrops of CRMD; therefore, along with
other ground control points collected during the field
visit, this class was used for lithological mapping of the
Loe-Shilman area (Figure 11). The results were analyzed
with the existing geological map of the area which show
an overall accuracy of 83.01% with a kappa coefficient
of 77%.

5 | DISCUSSION

Based on ASTER remote sensing and field data, an inte-
grated approach has been tried in this study, to map out-
crops of carbonatites and associate mineral deposits in
Loe-Shilman area in the vicinity of Pakistan-Afghanistan
boarder, in Northwest of Pakistani Himalayas. A number
of band ratios have been tested to better discriminate the
occurrence of CRMD from the surrounding rocks in
the area. The study area also contain meta-sedimentary
carbonate rocks in close contact with the carbonatites.
Therefore, the previously proposed band ratios
(i.e., (B6/B8) � (B9/B8) and (B6 + B8)/B7)) by Ninomiya

(2002), Rowan and Mars (2003), Ninomiya et al. (2005),
and Mars and Rowan (2011) for mapping carbonate min-
erals cannot be applied here because of similar spectral
characteristics of carbonate minerals in both
meta-sedimentary carbonates and carbonates of the car-
bonatites. Among the several other band ratio tested for
mapping CRMD, band ration B4/B3 has produced better
results compared to others, likely due to maximum
reflective and absorption characteristics in band 4 and
band 3, respectively, of distinctive non-carbonate min-
erals of carbonatites. However, as shown in Figure 8a,
this band ration might produce some false carbonatite
pixels/ areas when applied separately. These false detec-
tion of carbonatite pixels were likely due to presence of
some Fe-rich rocks in the area. The PCA and MNF trans-
formation when applied to all the nine VNIR-SWIR
bands of ASTER data highlight outcrops of CRMD in
PC6 and MNF5 transformed images, respectively. Eigen-
vector loadings of PC6 transformed image record highly
positive value in band 6 (0.8523) and highly negative
value in band 8 (�0.3860). Similarly, the eigenvector
loadings of PC6 transformed image are negative in bands
1, 2, and 3 and positive in bands 4–7, demonstrating simi-
larity to the spectral signatures of carbonates and other
distinctive minerals of carbonatites. The eigenvector load-
ings of MNF5 transformed image are positive in bands
4, 5, and 6 and negative in bands 1, 2, 3, and 8, which are
identical to the most indicative minerals of carbonatites
(apatite, hematite, goethite, and phlogopite). While using
the transformation techniques (i.e., PCA and MNF)
bands 3, 4, 6, and 8 appear as the most suitable spectral
bands where CRMD have diagnostic absorption and
reflectance in these bands. In fact, the carbonates have
significant narrow absorption in band 8 due to C O
bonds (e.g., Mars & Rowan, 2010) and high reflectance in
band 6, while bands 3 and 4 have spectral characteristics
for non-carbonate indicative minerals of carbonatites.

When combining band ratio with results obtained
from PCA and MNF, the common pixels representing
CRMD, presented better concordance with exposures of
CRMD in the field. This validates the significance of

TABLE 5 Number and percentage

of pixels mapped as carbonatites and

related minerals by all the methods.

Method Number of pixels Percentage (%) Area (m2)

BR 1453 29.60 326,925

MNF 950 19.35 213,750

BR + MNF 642 13.08 144,450

PCA 754 15.36 169,650

PCA + BR 402 8.19 90,450

PCA + MNF 428 8.72 96,300

PCA + BR + MNF 280 5.70 63,000

TABLE 6 The three classes that were generated and their

number and percentage of pixels.

Class Number of pixels Percentage (%) Area (m2)

1 3157 64.31 710,325

2 1472 29.99 331,200

3 280 5.70 63,000
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FIGURE 9 Reclassified map of

CRMD exposures. Class 1 represents

those areas where only one method;

class 2 any two methods and class 3 all

of the methods are commonly giving

possible exposures of CRMD. Locations

of the areas visited and samples

collected for methods validation are also

shown.

FIGURE 10 Hand specimens and photomicrographs of carbonatites showing their mineralogical compositions. (Cal: calcite); (Bt:

biotite, compositionally it is phlogopite); (Ap: Apatite); (Amp: amphibole); (Pcl: pyrochlore); (Mnz: monazite); (Ttn: titanite); (Mgt:

magnetite).
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combining the methods applied. Most of the points sam-
pled as CRMD during the field visit fit with the common
pixels for CRMD given by all of the applied methods
(class 3), with few points that were only mapped by two
or one methods (class 1 and class 2; Figure 8), which is
likely due to different sensitivity of the applied methods.

The obtained results were validated through field sur-
veys, chemical and petrographic analyses, which show
good agreement with previous geological maps of the
study area (e.g., Jan et al., 1981; Khan, Faisal, Larson,
et al., 2021; Khan, Faisal, Ullah, et al., 2021). The field
data were used to validate several zones mapped as possi-
ble CRMD by the different methods and validate the per-
formed classification. The pixels classified as outcrop of
CRMD by the ML-algorithm are concordant with those
commonly detected by the method combinations
(Figure 9). Indeed, the pixels classified as CRMD
(Figure 11) show more surface extension and complete
those observed in class 3 and 2 of the integrated map
(Figure 9). The ML algorithm based-classification has an
overall accuracy of 83% and the kappa coefficient calcu-
lated using the confusion matrix method is 0.86, which is
considered as an excellent agreement category of the
Kappa coefficient (e.g., Monserud & Leemans, 1992).

6 | CONCLUSIONS

This study demonstrate the suitability of ASTER data for
exploration of carbonatites and related minerals in arid
and inaccessible areas. Among several band ratios
selected on the basis of spectral characteristics of carbon-
ates and other distinctive minerals of carbonatites, band
ratio B4/B3 has proven to give better results compared to

others band ratios for enhancing outcrops of CRMD.
The PCA and MNF transformation when applied to all
the nine VNIR-SWIR bands of ASTER data highlight
CRMD in PC6 and MNF5 transformed images, respec-
tively. These three methods have different sensitivities for
mapping CRMD; however when the pixels mapped as
possible CRMD by all of the applied methods were
stacked, the common pixels were a better fit with expo-
sures of CRMD in the field. Therefore, this integrated
approach may be a useful tool for exploring CRMD in
other parts of the world, particularly in arid areas, and
may be a time- and cost-effective tool in inaccessible
remote areas where the conventional geological mapping
is difficult and requires large investments.
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